Smooth Interactive Submodular Set Cover
نویسندگان
چکیده
Interactive submodular set cover is an interactive variant of submodular set cover over a hypothesis class of submodular functions, where the goal is to satisfy all sufficiently plausible submodular functions to a target threshold using as few (cost-weighted) actions as possible. It models settings where there is uncertainty regarding which submodular function to optimize. In this paper, we propose a new extension, which we call smooth interactive submodular set cover, that allows the target threshold to vary depending on the plausibility of each hypothesis. We present the first algorithm for this more general setting with theoretical guarantees on optimality. We further show how to extend our approach to deal with realvalued functions, which yields new theoretical results for real-valued submodular set cover for both the interactive and non-interactive settings.
منابع مشابه
Interactive Submodular Set Cover
We introduce a natural generalization of submodular set cover and exact active learning with a finite hypothesis class (query learning). We call this new problem interactive submodular set cover. Applications include advertising in social networks with hidden information. We give an approximation guarantee for a novel greedy algorithm and give a hardness of approximation result which matches up...
متن کاملApproximation Algorithms for Submodular Set Cover with Applications
The main problem considered is submodular set cover, the problem of minimizing a linear function under a nondecreasing submodular constraint, which generalizes both wellknown set cover and minimum matroid base problems. The problem is NP-hard, and two natural greedy heuristics are introduced along with analysis of their performance. As applications of these heuristics we consider various specia...
متن کاملOnline Submodular Set Cover, Ranking, and Repeated Active Learning
We propose an online prediction version of submodular set cover with connections to ranking and repeated active learning. In each round, the learning algorithm chooses a sequence of items. The algorithm then receives a monotone submodular function and suffers loss equal to the cover time of the function: the number of items needed, when items are selected in order of the chosen sequence, to ach...
متن کاملSimultaneous Learning and Covering with Adversarial Noise
We study simultaneous learning and covering problems: submodular set cover problems that depend on the solution to an active (query) learning problem. The goal is to jointly minimize the cost of both learning and covering. We extend recent work in this setting to allow for a limited amount of adversarial noise. Certain noisy query learning problems are a special case of our problem. Crucial to ...
متن کاملAn Efficient Streaming Algorithm for the Submodular Cover Problem
We initiate the study of the classical Submodular Cover (SC) problem in the data streaming model which we refer to as the Streaming Submodular Cover (SSC). We show that any single pass streaming algorithm using sublinear memory in the size of the stream will fail to provide any non-trivial approximation guarantees for SSC. Hence, we consider a relaxed version of SSC, where we only seek to find ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015